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Abstract: In this paper improved spider algorithm (ISA) is projected to solve the optimal    reactive    power     

dispatch (ORPD) Problem. Stimulated by the societal spiders, we suggest a new Improved Spider Algorithm (ISA) 

to solve ORPD problem. The structure is chiefly based on the foraging approach of social spiders, which make use 

of the vibrations spread over the spider web to decide the position of preys. The simulation results demonstrate 

high-quality performance of ISA in solving an optimal reactive power dispatch problem.  The projected algorithm 

has been tested on IEEE 30 bus system and compared to other specified algorithms. Results show that ISA is more 

efficient than other algorithms to reduce the real power loss and to enhance the voltage profile index.  

Keywords: spider algorithm, swarm intelligence, evolutionary computation, optimal reactive power, Transmission 

loss. 

1.   INTRODUCTION 

In recent years the optimal reactive power dispatch (ORPD) problem has received huge attention as a result of the 

enhancement on economy and security of power system operation. Solutions of ORPD problem intend to minimize object 

functions such as fuel cost, power system loses, etc. while satisfying a number of constraints like limits of bus voltages, 

tap settings of transformers, reactive and active power of power resources and transmission lines and a number of 

controllable Variables [1, 2]. In the literature, many methods for solving the ORPD problem have been done up to now. 

At the beginning, several classical methods such as gradient based [3], interior point [4], linear programming [5] and 

quadratic programming [6] have been effectively used in order to solve the ORPD problem. However, these methods have 

some disadvantages in the procedure of solving the complex ORPD problem. Drawbacks of these algorithms can be 

declared insecure convergence properties, extended execution time, and algorithmic intricacy. In addition, the solution 

can be trapped in local minima [1, 7]. In order to triumph over these disadvantages, researches have been effectively 

applied evolutionary and heuristic algorithms such as Genetic Algorithm (GA) [2], Differential Evolution (DE) [8] and 

Particle Swarm Optimization (PSO) [9]. Voltage stability evaluation using modal analysis [10] is used as the indicator of 

voltage stability. At present several types of Evolutionary algorithm (EA) have been extensively employed to solve real 

world combinatorial problems. These algorithms reveal reasonable performance compared with conventional optimization 

techniques, particularly when applied to solve non-convex optimization problems [11]. In the past decade, swarm 

intelligence, a fresh kind of evolutionary computing technique, has fascinated much research interest [12]. Swarm 

intelligence is chiefly concerned with the methodology to model the behaviour of social animals and insects for problem 

solving. Researchers develop optimization algorithms by mimicking the behaviour of ants, bees, bacteria, fireflies and 

other organisms. The thrust of creating such algorithms was provided by the rising needs to solve optimization problems 

that were very complicated or even considered as obdurate. Among all spiders has been a chief research subject in bionic 

engineering for several years. Conversely, the majority of research interrelated to spiders focused on the simulation of its 

walking pattern to design robots [13]. A probable motive for this is that a majority of the spiders observed are lonely [14], 

which means that they spend most of their lives without intermingle with others of their species. Conversely, among the 

35 000 spider species observed and described by scientists, some species are societal. These spiders live in groups, e.g. 

Mallos gregalis and Oecobius civitas. Based on these social spiders, this paper formulates a new global optimization 

method to solve the ORPD problem. Spiders are air-breathing arthropods. They have eight legs and chelicerae with fangs. 
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They use an extensive range of different strategies for foraging, and most of them sense prey by sensing vibrations. 

Spiders have long been known to be very responsive to vibratory stimulation, as vibrations on their webs notify them of 

the capture of prey. If the vibrations are in a defined range of frequency, spiders attack the vibration source. The social 

spiders can also distinguish vibrations generated by the prey with ones generated by other spiders [15]. The social spiders 

submissively receive the vibrations produced by other spiders on the same web to have an apparent view of the web. This 

is one of the exclusive characteristics which differentiates the social spiders from other organisms as the latter habitually 

exchange information actively, which decreases the information loss to some degree but augments the energy used for 

contact [16]. In this paper, enthused by the social behaviour of the social spiders, particularly their foraging behavior, we 

put forward a new Improved Spider Algorithm (ISA) to solve ORPD problem. The foraging behaviour of the social spider 

can be explained as the mutual movement of the spiders towards the food source location. The spiders receive and 

analyses the vibrations proliferated on the web to decide the potential direction of a food source [17]. In this procedure, 

the spiders help each other to move towards the prey. We exploit this natural behaviour to perform optimization over the 

search space in ISA. The crowd living phenomenon has been studied intensively in animal behaviour ecology. One of the 

causes that animals congregate and live together are to augment the possibility of successful foraging and diminish the 

energy cost in this process [18]. In order to smooth the progress of the analysis of social foraging behaviour, researchers 

projected two foraging models: information sharing (IS) model [19] and producer-scrounger (PS) model [20]. The 

individuals below the IS model execute individual searching and look for for opportunity to join other individuals 

concurrently. In the PS model, the individuals are alienated into leaders and followers. Since there is no leader in social 

spiders [21], it seems the IS model is more appropriate, and we use this model to manage the searching pattern of ISA. 

Swarm intelligence algorithms imitate the methods in nature to drive a search for the optimal solution. The performance 

of ISA has been evaluated in standard IEEE 30 bus test system and the results analysis shows   that our proposed 

approach outperforms all approaches investigated in this paper.  

2.   VOLTAGE STABILITY EVALUATION 

2.1. Modal analysis for voltage stability evaluation 

The linearized steady state system power flow equations are given by. 

[
  
  

]  [
             

                
]     (1) 

Where 

ΔP = Incremental change in bus real power. 

ΔQ = Incremental change in   bus   reactive 

Power injection 

Δ  = incremental change in bus voltage angle. 

ΔV = Incremental change in bus voltage Magnitude 

Jp  , J PV , J Q  , J QV jacobian matrix are   the   sub-matrixes    of   the System  voltage  stability  is affected  by both P and 

Q. However at each operating point we keep P constant and evaluate voltage stability by considering incremental 

relationship between Q and V. 

To reduce (1), let ΔP = 0 , then. 

   [               ]            (2) 

                                                 (3) 

Where 

   (               )                       (4) 

   is called the reduced Jacobian matrix of the system. 
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A. Modes of Voltage instability: 

Voltage Stability characteristics of the system can be identified by computing the eigen values and eigen vectors  

Let 

          (5) 

Where, 

  = right eigenvector matrix of JR 

  = left eigenvector matrix of JR 

∧  = diagonal eigenvalue matrix of JR and 

             (6)                                  

          From (3) and (6), we have 

             (7)                                  

                 or 

   ∑
    

  
      (8) 

Where  i  is the ith  column right eigenvector and    the ith row left  eigenvector of JR.  

  i   is the ith eigen value of JR. 

The  ith  modal reactive power variation is, 

             (9) 

  where, 

   ∑  
        (10) 

Where 

 ji is the jth element of  i 

The corresponding ith modal voltage variation is 

     [   ⁄ ]         (11) 

In (8), let ΔQ = ek   where ek has all its elements zero except the kth one being 1. Then,  

     ∑
          

  
                                           (12) 

 
       

k th element of  
      

 

V –Q sensitivity at bus k  

   

   
 ∑

          

  
   ∑

   

  
               (13) 

3.   PROBLEM FORMULATION 

The objectives of the reactive power dispatch problem considered here is to minimize the system real power loss and 

maximize the static voltage stability margins (SVSM).  

3.1Minimization of Real Power Loss 

Minimization of the real power loss (Ploss) in transmission lines of a power system is mathematically stated as follows. 

      ∑      
    

               
 

 
   

       

            (14) 
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Where n is the number of transmission lines, gk is the conductance of branch k, Vi and Vj are voltage magnitude at bus i 

and bus j, and  ij is the voltage angle difference between bus i and bus j. 

3.2Minimization of Voltage Deviation 

Minimization of the Deviations in voltage magnitudes (VD) at load buses is mathematically stated as follows. 

Minimize VD = ∑ |      |  
                       (15) 

Where nl is the number of load busses and Vk is the voltage magnitude at bus k. 

3.3System Constraints 

In the minimization process of objective functions, some problem constraints which one is equality and others are 

inequality had to be met. Objective functions are subjected to these constraints shown below. 

Load flow equality constraints: 

    –      
 ∑   

  
   

[
         
          

]                                                                            (16) 

           
 ∑   

  
   

[
         
          

]                                                                         (17)               

where, nb is the number of buses, PG and QG are the real and reactive power of the generator, PD and QD are the real and 

reactive load of the generator, and Gij and Bij are the mutual conductance and susceptance between bus i and bus j. 

 

Generator bus voltage (VGi) inequality constraint: 

    
            

                                                                                             (18) 

Load bus voltage (VLi) inequality constraint: 

    
            

                                                                                             (19) 

Switchable reactive power compensations (QCi) inequality constraint: 

    
            

                                                                                            (20) 

Reactive power generation (QGi) inequality constraint: 

    
            

                                                                                            (21) 

Transformers tap setting (Ti) inequality constraint: 

   
          

                                    (22) 

Transmission line flow (SLi) inequality constraint: 

    
       

                                                                                                            (23) 

Where, nc, ng and nt are numbers of the switchable reactive power sources, generators and transformers. 

4.   IMPROVED SPIDER ALGORITHM 

In ISA, we formulate the explore space of the optimization problem as a hyper-dimensional spider web. Every position on 

the web symbolizes a feasible solution to the optimization problem and all feasible solutions to the problem have 

equivalent positions on this web. The web as well serves the transmission media of the vibrations created by the spiders. 

Each spider on the web grasp a position and the quality of the solution is based on the objective function, and 

characterized by the potential of finding a food source at the position. The spiders can move liberally on the web. 
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However, they cannot go away from the web as the positions off the web represent infeasible solutions to the optimization 

problem. When a spider shifts to a new position, it creates a vibration which is propagated over the web. Each vibration 

holds the information of one spider and other spiders can get the information upon receiving the vibration. 

A. Spider 

The spiders are the agent of ISA to execute optimization. At the beginning of the algorithm, a pre-defined number of 

spiders are placed on the web. Each spider (s) holds a memory, storing the following individual information: 

1) The location of (s) on the web. 

2) The fitness of the present position of (s). 

3) The goal vibration of (s) in the previous iteration. 

The first two types of information explain the individual situation of (s), while the third type of information is concerned 

in directing (s) to new-fangled positions.  

Based on observations, spiders are found to have very precise senses of vibration. In addition, they can divide different 

vibrations promulgated on the same web and sense their relevant intensities [21]. In ISA, a spider will create a vibration 

when it reaches a new-fangled position different from the previous one. The concentration of the vibration is connected 

with the fitness of the position. The vibration will propagate over the web and other spiders can sense it. In such a way, 

the spiders on the same web distribute their personal information with others to form a combined social knowledge. 

B. Vibration 

Vibration is a very significant concept in ISA. It is one of the key characteristics that distinguish ISA from other 

algorithms. In ISA, we use two properties to describe a vibration, namely the source position and the source concentration 

of the vibration. The source position is defined by the explore space of the optimization problem, and we define the 

concentration of a vibration in the range [0, +∞]. Every time a spider moves to a new position, it produces a vibration at 

its present position. We define the position of spider a at time t as Pa (t), or simply as Pa if the argument is t. We further 

use I (Pa, Pb , t) to represent the vibration concentration sensed by a spider at position Pb at time t and the source of the 

vibration is at position Pa. Thus I (Ps, Ps, t) defines the concentration of the vibration created by spider s at the source 

position. This vibration concentration at the source position is associated with the fitness of this position f (Ps), and we 

define the concentration value as follows: 

 

           {
 (          )                ⁄

                              ⁄
                              (24) 

                                                                                          

Where Cmax is a confidently large constant selected such that all possible fitness values of the maximization problem are 

smaller than Cmax, and Cmin is a assertively small constant such that all possible fitness values of the minimization problem 

is larger than Cmin. Equation (24) guarantees that the probable vibration intensities of any optimization problem are all 

positive values. It further assurance that a better fitness value, i.e. larger for maximization or smaller for minimization 

problem, corresponds to larger vibration concentration.  

C. Intensity Attenuation 

As a form of energy, vibration attenuates over time and distance. This physical occurrence is accounted for in the design 

of ISA by two equations. 

1)  Attenuation over Distance: We define the vibration attenuation over distance as follows. We describe the distance 

between spider a and b as D (Pa,Pb), and the maximum distance between two points in the search space as Dmax. The 

description of Dmax can be problem dependent, and we use the following equation for simplicity: 

 

     ‖ ̅   ‖
 
                                                  (25) 

Where  ̅ is the upper bound of the search space and   is the lower bound of the search space. p indicates that we use p-

norm as the technique to compute the distance between spiders, i.e., 
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         ‖     ‖                                        (26) 

In this paper we use 1-norm or Manhattan norm in distance calculation. If the search space is not constrained,  ̅  and   in 

Eqn. (25) stand for the upper and lower bound of the initial solution generation space, respectively. With the above 

definitions, we define the vibration attenuation over distance as follows: 

                         ( 
        

       
)       (27) 

In the above formula we introduce a user-controlled parameter ra   (0, 1). This parameter controls the attenuation rate of 

the vibration concentration over distance. The larger ra is, the weaker the attenuation forced on the vibration. 

2)   Attenuation over Time: We also bring in an equation to model vibration attenuation over time. As the vibration biases 

other spiders to move, a non-decaying vibration may potentially draw other spiders incessantly, causing the algorithm to 

converge pre-maturely. So the power of previous vibrations shall be properly attenuated to prevent pre-mature 

convergence. The vibration attenuation over time is defined as follows: 

                                          (28) 

 

In each iteration, all vibrations created in the previous iteration are attenuated by the factor ra. We utilize the same 

parameter ra introduced in the vibration attenuation over distance formula for ease of parameter tuning. At time t + 1, the 

location of spider a may change to Pa(t + 1), but the source position of the vibration remains at Pa(t). 

D. Search Pattern 

Here we express the above thoughts in terms of an algorithm. There are three phases in ISA: initialize, iteration, and 

conclusion. These three phases are executed successively. In every run of ISA, we begin with the initialize stage, then 

execute searching in an iterative manner, and lastly stop the algorithm and output the solutions found. In the initialize 

stage, the algorithm describes the objective function and its solution space. As the number of spiders remains unchanged 

during the simulation of ISA, a fixed size memory is allocated to accumulate their information. The location of spiders is 

arbitrarily created in the explore space, with their fitness values calculated and stored. The target vibration of each spider 

in the population is set at its current position, and the vibration concentration is zero. This ends the initialize stage and the 

algorithm starts the iteration stage, which execute the search with the artificial spiders produced. In the iteration phase, a 

number of iterations are executed by the algorithm. In each iteration, all spiders on the web shift to a new position and 

calculate their fitness values. The algorithm first computes the fitness values of all the artificial spiders on different 

positions on the web. Then these spiders generate vibrations at their locations using Equation (24). After all the vibrations 

are created, the algorithm simulates the propagation method of these vibrations using Equation (27). In this procedure, 

each spider s will accept pop Size – 1 different vibrations created by other spiders. The received information of these 

vibrations includes the source position of the vibration and its attenuated concentration. We use V to symbolize these pop 

Size − 1 vibrations. Upon the receipt of V, s will select the strongest vibration vbest from V and compare its strength with 

the concentration of the target vibration vtar stored in its memory. s will store vbest as vtar if the intensity of vbest is larger, 

otherwise the original vtar is preserved. 

                                         (29) 

Where   denotes element-wise multiplication. Ptar is the vibration source location of the target vibration vtar. R is a vector 

of arbitrary numbers generated from zero to one uniformly, whose length is weak, and 1 is a vector of one’s of length 

weak. The algorithm repeats this process for all the spiders in pop. To avoid ISA getting stuck in a local optimum, we 

initiate an artificial spider jump away process. Each spider in pop, right after the arbitrary walk step, has a small 

probability to decide not to follow its present target and jump away from its current position. The probability is defined 

using the following equation: 

   
  

                    
               (30) 

Where rj is a user-defined jump away rate parameter. If spider s is chosen to jump away, a new arbitrary position in the 

explore space is generated and assigned as the new position of s. The last step of the algorithm is to attenuate the 

concentration of the stored target vibration using Equation (28) and this end the iteration phase. The iteration phase loops 

until the end criteria are matched. The stop criteria can be defined as the maximum iteration number reached, the 
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maximum CPU time used, the error rate reached, the maximum number of iterations with no development on the best 

fitness value. After the iteration phase, the algorithm outputs the best solution with the best fitness established.  

The above three phases comprise the complete algorithm of ISA.  

Algorithm - Improved Spider Algorithm for ORPD problem 

1: Assign values to the parameters of ISA. 

2: Create the population of spiders pop and allocate memory for them. 

3: Initialize vtar for every spider. 

4: while stopping criteria not met do 

5: for every spider s in pop do 

6: compute the fitness value of s. 

7: create a vibration at the position of s. 

8: end for 

9: For every spider s in pop do 

10: Compute the concentration of the vibrations V created by other spiders. 

11: pick the strongest vibration vbest from V . 

12: if the concentration of vbest is larger than vtar then 

13: Gather vbest as vtar. 

14: end if 

15: Carry out a arbitrary walk towards vtar. 

16: create a arbitrary number r from [0,1]. 

17: if r < pj then 

18: allot an arbitrary position to s. 

19: end if 

20: alleviate the concentration of vtar. 

21: end for 

22: end while 

23: Display Output – when  best solution found. 

5.   SIMULATION RESULTS 

The accurateness of the projected ISA method is demonstrated by testing it on standard IEEE-30 bus system. The IEEE-

30 bus system has 6 generator buses, 24 load buses and 41 transmission lines of which four branches are (6-9), (6-10) , (4-

12) and (28-27) - are with the tap setting transformers. The lower voltage magnitude limits at all buses are 0.95 p.u. and 

the upper limits are 1.1 for all the PV buses and 1.05 p.u. for all the PQ buses and the reference bus. The simulation 

results have been presented in Tables 1, 2, 3 &4. And in the Table 5 shows the proposed algorithm powerfully reduces the 

real power losses when compared to other given algorithms. The optimal values of the control variables along with the 

minimum loss obtained are given in Table 1. Corresponding to this control variable setting, it was found that there are no 

limit violations in any of the state variables.  
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Table 1. Results of ISA – ORPD optimal control variables 

Control variables Variable setting 

V1 

 

V2 

 

V5 

 

V8 

 

V11 

 

V13 

 

T11 

 

T12 

 

T15 

 

T36 

 

Qc10 

 

Qc12 

 

Qc15 

 

Qc17 

 

Qc20 

 

Qc23 

 

Qc24 

 

Qc29 

 

Real power loss 

 

SVSM 

1.042 

 

1.040 

 

1.040 

 

1.030 

 

1.004 

 

1.040 

 

1.01 

 

1.00 

 

1.01 

 

1.02 

 

4 

 

2 

 

4 

 

0 

 

4 

 

3 

 

3 

 

3 

 

4.3799 

 

 

 

0.2462 

 

ORPD together with voltage stability constraint problem was handled in this case as a multi-objective optimization 

problem where both power loss and maximum voltage stability margin of the system were optimized concurrently. Table 

2 indicates the optimal values of these control variables. Also it is found that there are no limit violations of the state 

variables. It indicates the voltage stability index has increased from 0.2462 to 0.2472, an advance in the system voltage 

stability. To determine the voltage security of the system, contingency analysis was conducted using the control variable 

setting obtained in case 1 and case 2. The Eigen values equivalents to the four critical contingencies are given in Table 3. 

From this result it is observed that the Eigen value has been improved considerably for all contingencies in the second 

case.  
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Table 2.Results of   ISA -Voltage Stability Control Reactive Power Dispatch Optimal CONTROL VARIABLES 

Control Variables Variable Setting 

V1 

 

V2 

 

V5 

 

V8 

 

V11 

 

V13 

 

T11 

 

T12 

 

T15 

 

T36 

 

Qc10 

 

Qc12 

 

Qc15 

 

Qc17 

 

Qc20 

 

Qc23 

 

Qc24 

 

Qc29 

 

Real power loss 

 

SVSM 

1.044 

 

1.043 

 

1.041 

 

1.030 

 

1.004 

 

1.033 

 

0.090 

 

0.090 

 

0.090 

 

0.090 

 

3 

 

4 

 

4 

 

2 

 

0 

 

4 

 

2 

 

4 

 

4.9970 

 

 

0.2472 

Table 3. Voltage Stability under Contingency State 

Sl.No Contigency ORPD Setting VSCRPD Setting 

1 28-27 0.1410 0.1427 

2 4-12 0.1658 0.1668 

3 1-3 0.1774 0.1784 

4 2-4 0.2032 0.2047 
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Table 4. Limit Violation Checking Of State Variables 

State variables 
limits 

ORPD VSCRPD 
Lower  upper 

Q1 -20 152 1.3422 -1.3269 

Q2 -20 61 8.9900 9.8232 

Q5 -15 49.92 25.920 26.001 

Q8 -10 63.52 38.8200 40.802 

Q11 -15 42 2.9300 5.002 

Q13 -15 48 8.1025 6.033 

V3 0.95 1.05 1.0372 1.0392 

V4 0.95 1.05 1.0307 1.0328 

V6 0.95 1.05 1.0282 1.0298 

V7 0.95 1.05 1.0101 1.0152 

V9 0.95 1.05 1.0462 1.0412 

V10 0.95 1.05 1.0482 1.0498 

V12 0.95 1.05 1.0400 1.0466 

V14 0.95 1.05 1.0474 1.0443 

V15 0.95 1.05 1.0457 1.0413 

V16 0.95 1.05 1.0426 1.0405 

V17 0.95 1.05 1.0382 1.0396 

V18 0.95 1.05 1.0392 1.0400 

V19 0.95 1.05 1.0381 1.0394 

V20 0.95 1.05 1.0112 1.0194 

V21 0.95 1.05 1.0435 1.0243 

V22 0.95 1.05 1.0448 1.0396 

V23 0.95 1.05 1.0472 1.0372 

V24 0.95 1.05 1.0484 1.0372 

V25 0.95 1.05 1.0142 1.0192 

V26 0.95 1.05 1.0494 1.0422 

V27 0.95 1.05 1.0472 1.0452 

V28 0.95 1.05 1.0243 1.0283 

V29 0.95 1.05 1.0439 1.0419 

V30 0.95 1.05 1.0418 1.0397 

Table 5. Comparison of Real Power Loss 

Method Minimum loss 

Evolutionary programming[22] 5.0159 

Genetic algorithm[23] 4.665 

Real coded GA with Lindex as 

SVSM[24] 

4.568 

 

Real coded genetic algorithm[25]  

4.5015 

Proposed ISA  method  4.3799 
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6.   CONCLUSION 

In this paper, one of the recently developed stochastic    algorithms    ISA has      been demonstrated and applied to solve 

optimal reactive power dispatch problem. The problem has been formulated as a constrained optimization problem. 

Different objective functions have been utilized to minimize real power loss and   the voltage profile has been enhanced 

within the limits. The proposed approach has been tested on the IEEE 30-bus power system and the simulation results 

indicate the effectiveness and robustness of the proposed algorithm to solve optimal reactive power dispatch problem.  
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